TI)
 INTERNATIONAL MATHEMATICS TOURNAMENT OF TOWNS

JUNIOR PAPER: YEARS 8,9,10

Tournament 41, Northern Autumn 2019 (A Level)
© 2019 Australian Mathematics Trust
Note: Each contestant is credited with the largest sum of points obtained for three problems.

1. Let the number of prime factors in the prime factorisation of an integer $n>1$ be called the complexity of n. For example, the complexity of numbers $4=2 \times 2$ and $6=2 \times 3$ is equal to 2 for both numbers. For which integers n do all integers m strictly between n and $2 n$, i.e. satisfying $n+1 \leq m \leq 2 n-1$, have complexity
(a) not greater than the complexity of n ?
(b) less than the complexity of n ?
(2 points)
2. Let $A B C$ and $A_{1} B_{1} C_{1}$ be two acute triangles such that points B_{1} and C_{1} lie on the side $B C$ and A_{1} lies inside triangle $A B C$. Let S and S_{1} be the areas of triangles $A B C$ and $A_{1} B_{1} C_{1}$ respectively. Prove that

$$
\begin{equation*}
\frac{S}{A B+A C}>\frac{S_{1}}{A_{1} B_{1}+A_{1} C_{1}} . \tag{7points}
\end{equation*}
$$

3. There are 100 visually identical coins of three types: gold, silver and bronze, with at least one coin of each type. Each gold coin weighs 3 grams, each silver coin weighs 2 grams and each bronze coin weighs 1 gram. How can one determine for sure the type of each coin by making no more than 101 weighings on a set of balance scales with no weights?
(7 points)
4. Let $A B C$ be a triangle with circumcentre O. Two perpendiculars $O P$ and $O Q$ are dropped from O onto the internal and external bisectors of $\angle B$. Prove that the line $P Q$ bisects the line segment that connects the midpoints of $C B$ and $A B$.
(7 points)
5. Let a pair (m, n) of distinct positive integers be called nice if $m n$ and $(m+1)(n+1)$ are perfect squares. Prove that for every positive integer m there exists at least one n with $n>m$ such that the pair (m, n) is nice.
(8 points)
6. Petya initially has several $\$ 100$ notes and no other money. He begins to buy books, each book costing a whole number of dollars, and he receives change in $\$ 1$ coins. If Petya buys an expensive book ($\$ 100$ or higher), he uses only $\$ 100$ notes, tendering the smallest number of $\$ 100$ notes required. If he is buying a cheap book (less than $\$ 100$), he uses his $\$ 1$ coins if he has enough, otherwise he uses a $\$ 100$ note. Petya finally runs out of $\$ 100$ notes, and at that time he had spent exactly half of his money. Is it possible that Petya spent at least $\$ 5000$ on books?
(8 points)
7. Petya has a wooden square stamp divided into a grid of small squares. He covers 102 small squares of the stamp with black ink. Then he presses the stamp 100 times on a sheet of white paper so that each time only the blackened 102 squares are imprinted on the paper. Is it possible that after doing the imprint on the paper there is a 101×101 square grid such that all its 1×1 small squares except one corner square are black?
